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I. SPEECH PRODUCTION 

A. VOCAL-TRACT AREA AND LENGTH PERTURMTIONS 

G. Fant 

Abstract 

A circuit-theory approach for deriving formulas for  vocal-tract 
cross-  sectional a rea  and length perturbations i s  outlined. I t  i s  
demonstrated that the effect of a non-uniform length scaling i s  pro- 
portional to the spatial density ef stored reactive energy along the 
vocal tract. This energy distribution also serves  to define the rela-  
tive cavity-resonance importance of various pa r t s  of the tract. The 
formula i s  tested in a scaling of vowels with different length factors 
for the pharynx and the mouth. I -  . - I 
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Introduction 

This work was initiated in  1966 a s  a par t  of a compendium on speech 

communication for a course a t  KTH, Fant (1967). 

The object of the study has been to derive perturbation formulas from 

circuit-theory concepts and to extend the theoretical analysis to include 

non-uniform length perturbation. 

Calculations of resonance frequencies and bandwidths 

We shall consider the vocal t ract  a s  a transmission line with the 

distributed inductance and capacitance per unit length 

where A(x) i s  the cross-sectional a r ea  a t  a coordinate x cm from the 
1 

glottis. The impedance Z(x) = [ L(x)/c(x)] = pc/A(x). The density 
- 3 

p = 1. 2- 10 g/crn3 and the velocity of sound c = 35300 cm/s  a t  stand- 

a rd  speaking conditions. The distributed ser ies  resistance is denoted , 

R(x) and the shunt conductance G(x) . Other sources of energy dis sipa- 

tion a r e  the finite glottal resistance R the resis tance of the vocal-tract 
g' 

wall impedance Rw, and the radiation resis tance 

The contribution of these dissipative elements to the bandwidth of 

vocal resonances has been analyzed in detail by Fant (1960) and (1972) 

and Fant and Pauli ( 1974). Lasses  through the wall impedance dominate 

the bandwidth B i  of low f i r  s t  formants Fi. The surf ace losses  through 

~ ( x )  and G ( X )  determine B2, B3, and B when the lipopening i s  very nar-  4 
row whilst the radiation resistance R ~ ( W )  i s  the main determinant of B2, 

B3, and B4 when the entire vocal t ract  a s  well a s  the lips a r e  open. 

F r om  standard circuit theory we can state the following theorem: 

The poles sn = CY + jwn of a complex network a r e  the same in any trans-  

fer function defined by the ratio of any observed current or  voltage to a 

source current o r  voltage introduced without disturbing the impedance 

structure, This i s  simply a consequence of the system determinant be- 

ing the same. Appropriate sources a r e  ser ies  voltages e. within a branch 
1 
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After introducing the effective length of the tube 

Eq. (8) may be rewritten 

which we denote 

In the Appendix of Fant (1960) i t  i s  shown that resonance frequencies 

and bandwidths calculated according to Eqs. (7) and ( 1 I )  agree well with 

measurements on a physical model (wooden sphere a s  a baffle for a brass  
2 tube of 16 .4  cm length and 8 cm area,  c = 34.400 cm/s at  2 0 ' ~ ) .  These 

data a r e  summarized in the following tabulation: 

TABLE I-A-I. 

This experiment (carried out in cooperation with A. ~ b l l e r  in 1957) 

verifies the assumptions of circuit constants a s  well a s  the theoretical 

approach. The usefulness of the concept of the effective length 

A e  = a + 1 was demonstrated in the bandwidth calculations. Instead of 
0 

the more exact Eq. (7) we may calculate resonance frequencies of the 

single tube from 

F l  

F 2  

F 3  

F 4  
,- 

cot n' 'e = 0 
C 

F 
n 

Calc. Meas. 

Hz 

486 

1459 

2445 

3444 

surface 
losses 

Hz 

485 

1459 

2434 

3442 

Bin 
Calc. 

Hz 

4. 5 

7 . 9  

10. 2 

12. 1 

B on , 

Calc. 

Hz 

3.4  

4 3 . 6  

133 

225 

radiation total bandwidth 

R O D o  
Calc. 

Bn 
Calc. 

KS(d 
Calc. 

B n 
Meas. 

Hz 

8 

44 

128 

228 

0 .0055 

0 .07 

0. 20 

0 .34 

Hz 

I. 1 

1. 6 

1.7 

1.45 
i 

7 . 9  

51. 5 

143 

237 
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The e r ro r s  in the f irst  four formants a r e  0, -2, - 16, -43 Hz, respec- 

tively. With smaller lipopenings the e r ro r s  become smaller. 

The distribution of volume velocity and pressure inside the tract i s  

not affected by inclusion of the loss elements. This has been demonstrated 

by Mrayati and Carr& (1975) in a report where the calculations of Fant and 

Pauli (1974) have been applied to French vowels. The effect i s  most no- 

ticeable in open vowels where the radiation impedance dominates the loss  

elements. Also the sratial distributions of pressure in the complete I 

LEA-model for the Russian vowels agree well with those of the loss-less 

distributions calculated by Fant and Pauli (1974). In the general case of . 

an arbitrary vocal-tract configuration the bandwidths may be calculated 

from the ratio of dissipated and stored energies per cycle of a mode, a s  

demonstrated by Fant and Pauli (1974) or from the interpolation of a I 

complex system determinant, Fant ( 1970). , , 

Perturbation theory 

The approach followed here i s  to study the separate effects of changes, 

A L( x) and A C(x), in the distributed elements L(x) and C(x), and to relate 

the observed frequency shifts to equivalent changes, AA(x) and A (x) in 

cross- sectional area  and in unit length of a section of the transmission 

line. Two different methods leading to the same result have been devel- 

oped. One i s  concerned with the impedance condition for resonance a s  1 
outlined in the previous section, the other s tar ts  out from the criterion 

of kinetic energy of a mode equaling the potential energy of the mode. 

As already discussed in  the previous section, Eq. (4), the poles a r e  

found a s  the complex frequencies providing zero branch impedance, a s  

seen from the element AL(x). 

Neglecting losses (as  proved to be possible in the open tube case) the res-  

onance frequencies u, before the perturbation satisfy 
n i  

Since any reactance incr eaL.e s with frequency, the insertion of AL(x) 

causes a negative frequency shift A n l="'n~-~ n i  of the resonance mode 

"'n* 
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and 

Similarly, after insertion of A C(x), there i s  a shift Awn2 = %3 - wn2 

determined by: 

where the su sceptance 

and 

F r o m  Eqs. (19) and (15) we find 
c. 
L z!,kLd - XX' (x, w)' u (x, ") B' (x. w) = - 

X r ( x '  w )  
2 

p (x, w )  

I t  is now convenient to convert X I  to an energy function. The power 
2 input to a two-terminal network with input impedance Z = pi/ui is 2. . Ui . 

i 1 - I If a l l  branches k contain reactances. Sk and/or - , the sum of the 
Ck reactive power stored in the reactances equals the reactive power input to 

the terminal 

After differ entiation 

I - .  dXi(") I 2  1 2  1 
2 u 2 = z - U  2 k k  L +ZzUk = EK + Ep do, 1 (23) 

Here ET = E + E is the sum of the total kinetic EK and the total poten- K P 
tial energy E F r o m  Eqs. (17) and (23), P ' 
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where AE (x) i s  the increase of kinetic energy associated with the element K 
I 

A L(x) and a constant current U(x). 

Similarly from Eqs. (20), (21). and (23) 

1 2  
AWn2 ' 'Z P (X)AC(X) - - AEK(x) -= 

1 2  
- 

"'n2 ET + ZP (x) A C(x) E~ + hEp(x) 

It i s  here under stood that ~ ( x )  pertains to the pressure before insertions 

of hL(x) and that ET thus i s  the same a s  in Eqs. (24) and (26). 1 .  

Combining Eqs. (25) and (27) we get a total frequency shift which i s  ap- 

proximately 

We may now study the effect of a perturbation in A(x). 

For small perturbations AA(X)/A(X) < < 1, we can write 

The combined effect of distributed perturbations i s  then approximately 

a s  stated by Fant (1967), Fant and Pauli (1974). To derive the effects of 

lengths perturbations ~ ( x ) ,  we express the change in kinetic energy per 

unit length 
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Retaining the dwom.in&or of-~q.(2?)  for increased accuracy and denoting 

EK(x) + Ep(x) = ET(x), we find 

The alternative approach i s  to start out from the pressure-velocity 

equations for the transmission line analog 

A perturbation bL(x) introduces an excess of kinetic energy AEkx) = 
1 2  = - u (x)AL(x), 2 which i s  compensated for by a frequency lowering that 

increases the potential energy and/or decreases the kinetic energy in 

other parts  of the line. At resonance, before and after the perturbation 

the kinetic energy equals the potential energy but we a r e  f ree  to chose 

any relation between the actual energy levels before and after the per-  

turbation. Assume U(x) and thus dU/dx approximately the same after 

perturbation. 

Kinetic energy Potential energy 

Before 
pertur - 
bat ion E~ 

After 
A L(x) 
pertur - EK + A EK(x) 
bation 

and 

O 2  -- - E~ - - E~ 
w 1 

1 E K + ~ A E K ( x )  ET+ hEK(x) 
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which i s  identical to Eq. (25). Similarly, a perturbation AC(x) assuming 

P(x) and d ~ ( x ) / d x  to be approximately constant is associated with the fol- 

lowing energy states 
I 

Kinetic energy Potential energy 1 
Before 
A C(x) 
pertur - 
bation . 

After 
A C(x) 

p e r t u r -  Ep + A Ep(x) 
bation 

1 Since Ep = - E 2 T we may approximate 

a s  in Eq. (27). For  distributed perturbations, Eqs. (36) and (39) com- 

bine to I 

2 
W 3  - - i 

("I) (~+XLDE~(X)/E~(X)J)(~+~LAE~(X)/E P (x)]) (41) 
I 

Discussion and experimental validation 

The relation between energy and frequency shifts was discussed by 
I 

Schroeder (1967) with reference to perturbations in the uniform tube. 

These relations, referred to a s  the Ehrenfest formula, a r e  approximately 

valid for an arbitrary shaped vocal tract,  Fant (19 67). Instead of the 

simpler formula A w /u, = -DE/E we retain a higher degree of accuracy by 

the relation A W / W  = -AE/(E+AE), a s  pointed out by Schroeder. We shall 

see how this i s  validated by a uniform length perturbation, i. e. a simple 

scale factor change in length dimension. Instead of A (x) in Eq. (33), we 

introduce the constant A ,  which we relate to a new parameter . I 
I 

Eq. (33) thus reduces to 
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As an example, i f  a single tube resonator is doubled in length, i. e. 

A = I ,  the frequency shift i s  A ro /u, = -0. 5, which also holds for a gen- 

eral  shaped vocal tract. Eq. (43) implies that all  formants a r e  shifted 

by k70, when an overall scale factor in length of A =  -k/(lfk) i s  applied. 

As verified numerically we can approximate Eq. (33) very well with the 

expression 

which means that the relative frequency shift A ro/w i s  the energy 

weighted average of the frequency shift factors k(x) applied to the sep- 

arate parts  of the vocal tract. 

Uniform scaling in vocal-tract area ,  A A(x)/A(x) = constant, should 

leave all resonance frequencies intact. This may be derived from per- 

turbation formula, Eq. ( 3  I), since X EK(x) = x Ep(x) . For greater va- 

lues of AA(X)/A(X) we have to write AL/L = -AA/\A +a) instead of 

-AA/A and i t  i s  only Eq. (41) that then stands up to the test of A*/* = 0. 

We a re  now in a position to make a more precise statement about the 

uniforin length scaling. The inverse proportionality of total length and 

resonance frequencies holds exactly only i f  the end correction 0.8 Jmir9 
0 

i s  scaled by the same factor a s  length dimensions. This condition would 

hold for a simultaneous scaling of length and vocal-tract a rea  by the same 

linear factor. 

I t  was suggested by Fant ( 1960) and again by Fant and Pauli (1974) that 

the sum of the spatial kinetic and potential energy densities, i. e. ET(x), 

i s  a suitable parameter for describing the "cavity- resonance" dependency. 

This i s  intuitively supported by the fact of ET(x) being constant along a 

uniform tube resonator, all par ts  contributing the same to the tuning of 

the mode. 
I 

In addition, we have now proved that the energy density i s  a measure 

of the sensitivity of the tract to local expansions or contractions of the 

length dimension. In Fig. I-A- I ,  pertaining to the six Russian vowels 

studied by Fant (1960) and processed by Fant and Pauli ( 1974), this pa- 

rameter E (x) i s  denoted TOT = KINtPOT whilst the area  perturbation 
T 

sensitivity LAG = KIN-POT of the same vowel i s  shown in Fig. I-A-2. 



AREAFUNCTION AREAFUNCTION * 1.:: s- 

KIN+ POT ENERGY DENSITY KIN + POT ENERGY DENSITY 

C 

Fig. I-A- 1 .  Spatial distribution of kinetic plus ?otential energy for the s ix  Russian vowels of Fant (1960). From 
Fant and Pauli (1974). These graphs are ureful for p ~ d i c t i n g  the effects - of length - perturbations. 

6 10 15 

w/J--+ 
TOT b io ~k 

F1 

AREA 

,: I f  

6- 

. 

TOT t io is 

F 1 
TOT t Ib 1k 

- 

F 1 



AREAFUNCTION 

LAG= KIN-POT ENERGY DENSITY 

AREAFUNCTION 

LAG= KIN - POT ENERGY DENSITY 

Fig.  I-A- 2. Spatial distribution of kinetic energy KIN minus the potential energy POT for the s ix  Russian vowels. 
-- - -  This parameter, denoted LAG, the "Lagrangiant', displays the sensitivity to local area changes. 
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As  expected, i n  $he regions of maximum KINtPOT the parameter  

KIN-POT shows i t s  la rges t  oscillations. A s  has  been pointed out many 

t imes before, e. g. by Fant (1960) and Fant and Pauli  ( 1974), we observe 

the front pa r t  of the t rac t  affiliation of F2 of [i ] and F3 of [ i  ] and the 

back-part affiliation of F of [ /  ] and F2 of [ i 1. There i s  a lso a peak 
3 

of prominence a t  the lipopening of F of [ u ]  and a t  the larynx tube for 1 
F4 of all  vowels. We can a lso  observe the distribution of F3-energy of 

I 

[ u 1 ,  [ o ] , and [a ] in the middle pa r t  of the t r ac t  with a tendency of ' 
the F3-[ o ] -energy to have i t s  spatial peak i n  the mouth par t  of the tract.  

These observations conform well with the r e su l t s  discussed by Fant  (1975) 

in  the previous i s sue  of the STL-QPSR. The specific sensitivities of 1 
vowel formants to different scalings in the mouth and in  the pharynx follow 

the energy distributions. However, the main tendency a s  observed by 

Nordstr6m (1975) is that of uniform shift of resonance frequencies in spite 

of separate  scaling factors  being applied to  the mouth and the pharynx. I 

This average tendency conforms with the general impress ion  of Fig.  I 

I-A- I that in most  vowels the energy of any mode is substantially spread 

out over the ent i re  t ract .  In a more  detailed view, we observe the non- 

uniform energy d i s t r ibu t ion~  discussed above. 

W e  shall now tes t  the perturbation formula for  separate  scale fac tors  

in  the mouth and in  the pharynx. Eq. (44) becomes 

where E l  i s  the total energy in  the pharynx (from the glottis to the uvular 

region) and E2 i s  the total energy in the mouth (from the uvular region 

to the point of radiation a t  the l ips).  If the pharynx is scaled to A 100 I 

per cent increase in length, the associated frequency factor k i s  defined 1 
a s  - A  100/ (1+~ per  cent. 

Resul ts  of perturbation of the [ i ]- t ract  by use of Eq. (45) a r e  shown 

in the following tabulation together with exact values calculated f rom the 

Liljencrants-Fant ( 197 5) program for  converting a r e a  functions to r eso- 1 
nance frequencies. 
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One shortcoming of the energy distributions in Figs.  I-A- 1 and I-A- 2 

is that t t teydo not include the kinetic energy stored in  the radiation r eac- 

tance. However, i t  has  been extrapolated and made use of in the present  

perturbation calculations. It would be logical to extend the x- coordinate 

of the energy function by the radiation inductance end-correction length 
I 

and to confine the kinetic energy of radiation - L u2 to this interval 2 0 0  

instead of lumping i t  a l l  to the x=O coordinate, a s  done by Mrayati and 

Carrk  (1975). 1 
Fig. I-A-2 se rves  a s  a guide for assessing how sensitive any mode 

i s  to local a r e a  changes a t  any coordinate. These curves should not be 

confused with the distributed perturbations affecting one resonance only, 

as derived for instance by Heinz (1967j. 
' 

I 
I 

A few character is t ics  can be mentioned. In a l l  vowels F is raised 1 
by a contraction of the pharynx. The expansion of the mouth cavity is I 
m o r e  effective in rising F of front vowels than back vowels. An excep- i 
tion is the apparent influence of a lipopening in r is ing F of [ u  ] and [ o 1. I 
In [ o ] and [a ] i t  is a narrow region a few c m  above the larynx where 

a contraction i s  maximally effective in r is ing F This might be a 1' 
factor of relevance to the la rge  female-male difference in  F of maximally I 
open vowels. 

F2 of [ u ]  , [ 01, and [ a ]  a r e  ra i sed  by an expansion of the middle o r  

upper pa r t  of the pharynx o r  by a contraction of the mouth cavity. An 

expansion of the middle par t  of the pharynx of [ i ] or of the upper pa r t  

of the pharynx of [ e  1, r a i s e s  F2. F2 of [ i] i s  almost insensitive to 

pharyngeal perturbations. In al l  the back vowels F i s  r a i sed  by a 
3 , 

contraction in the uvular region. I 
I 
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