
Vocal Tract Length Perturbation (VTLP) improves speech
recognition

Navdeep Jaitly ndjaitly@cs.toronto.edu

University of Toronto, 10 King’s College Rd., Toronto, ON M5S 3G4 CANADA

Geoffrey E. Hinton hinton@cs.toronto.edu

University of Toronto, 10 King’s College Rd., Toronto, ON M5S 3G4 CANADA

Abstract

Augmenting datasets by transforming inputs
in a way that does not change the label is
a crucial ingredient of the state of the art
methods for object recognition using neural
networks. However this approach has (to
our knowledge) not been exploited success-
fully in speech recognition (with or without
neural networks). In this paper we lay the
foundation for this approach, and show one
way of augmenting speech datasets by trans-
forming spectrograms, using a random linear
warping along the frequency dimension. In
practice this can be achieved by using warp-
ing techniques that are used for vocal tract
length normalization (VTLN) - with the dif-
ference that a warp factor is generated ran-
domly each time, during training, rather than
fitting a single warp factor to each training
and test speaker (or utterance). At test time,
a prediction is made by averaging the predic-
tions over multiple warp factors. When this
technique is applied to TIMIT using Deep
Neural Networks (DNN) of different depths,
the Phone Error Rate (PER) improved by an
average of 0.65% on the test set. For a Convo-
lutional neural network (CNN) with convolu-
tional layer in the bottom, a gain of 1.0% was
observed. These improvements were achieved
without increasing the number of training
epochs, and suggest that data transforma-
tions should be an important component of
training neural networks for speech, espe-
cially for data limited projects.
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1. Introduction

Data augmentation is a key ingredient of the state of
the art systems for object recognition (LeCun et al.,
1998; Krizhevsky et al., 2012; Simard et al., 2003; Cire-
san et al., 2011). In these systems the data vectors are
transformed in such a way as to preserve labels. Typi-
cally for vision systems, such transformations are easy
to conceive of - translating, rescaling and distorting the
image locally, etc, are transformations that do not af-
fect the class label of the object in the image, but are
yet able to create new related data examples. Data
augmentation is very useful for small datasets where
the number of examples is low, such as MNIST. How-
ever, it has also been helpful in large datasets such as
ImageNET. With the widespread adoption of neural
networks in speech recognition systems it is natural to
ask if the same strategy could be applied here. In this
paper we show that it is indeed possible to augment
speech databases, and to use the augmented database
to achieve improved accuraccy.

Voice Conversion is a natural candidate for gener-
ating transformations of utterances, to augment a
database. Each utterance could be transformed to
multiple speakers, generating new utterances. How-
ever, typical voice conversion algorithms require sev-
eral utterances per speaker. In addition, the number
of target speakers is limited to a few chosen speak-
ers for whom good models can be developed. As such
applying voice conversion to generate an augmented
database is not a very attractive option.

An alternative method to generating variations in in-
put data is to apply speaker normalization methods in
the reverse manner - i.e. instead of using normaliza-
tion methods to remove speaker to speaker variations,
we can use them to add variations of input data to
the training set. This can be done by normalizing in-
put data to random targets, instead of to a cannonical
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mean. In this paper, we show that Vocal Tract Nor-
malization (VTLN) techniques can be used success-
fully for this.

VTLN is used in speech recognition to remove speaker
to speaker variability that result primarily from dif-
ferences in vocal tract length(Lee & Rose, 1998). To
achieve vocal tract normalization, the frequency axis
of the spectrogram of each speaker is linearly warped
using a warp factor α, that accounts for the relative
length of their vocal tract compared to the cannonical
mean. This factor is fit during training time for each
speaker in the training database. For speakers in the
testing database, different strategies may be applied
to fit the warp factor during decoding (Lee & Rose,
1998).

In this paper we propose to augment the training
database by randomly generating a random warp fac-
tor for each utterance during training. We call this
VTLP (for Perturbation). We show that this strategy
leads to significant, consistent gains. For TIMIT this
strategy produced consistent gains of 0.1% to 1.1%
(with an average of 0.65%) on the test set, when us-
ing DNNs of different depth. The strategy also pro-
duced a gain of 1.0% using a baseline CNN. Data aug-
mentation through transformation, therefore, repre-
sents an important direction to be exploited, especially
for projects, such as Babel http://www.iarpa.gov/
Programs/ia/Babel/babel.html, where the amount
of transcribed training data is limited.

2. Methods

Here we first briefly summarize how Mel filter bank
features are computed traditionally. Then we sum-
marize how we generate transformed utterances using
VTLP and Mel filter banks. Lastly, we discuss how the
neural network is trained, and used during decoding.

2.1. Mel filter banks

Mel filter banks are filter banks where the spacing be-
tween consecutive triangular filters in the frequency
domain is motivated by psycho-acoustic considerations
(Davis & Mermelstein, 1980). In this scheme, a set of
N filter banks are centered at, equi-distant points on
the Mel scale. The Mel-scale for a frequency, f is de-

fined as: m(f) = 1127.01 ∗ log
(

1 + f
700

)
. Thus for N

filter banks, between a frequency range of Fmin and
Fmax

1, the center frequency of the ith filter bank is:

1We used Fmin = 0Hz and Fmax = 8000 Hz although,
Fmin = 300 may be more typical.

f(i) = m−1
(
m (Fmin) +

m (Fmax) −m (Fmin)

N − 1
(i− 1)

)
(1)

where m−1(s) = 700
(
exp

(
s

1127.01 − 1
))

is the inverse
of the Mel scale function. Each filter bank starts from
the center of the previous filter bank and ends at the
center of the next filter bank. We used a triangular
window function for each filter bank, with the max
value of 1 at the center and 0 at the boundaries.

2.2. Augmenting database with random VTLP

For VTLP, we generate a random warp factor α for
each utterance, and warp the freqency axis, such that
a frequency f is mapped to a new frequency f ′ using
an approach similar to that outlined in (Lee & Rose,
1998):

f ′ =

{
fα f ≤ Fhi

min(α,1)
α

S/2 − S/2−Fhimin(α,1)

S/2−Fhi min(α,1)
α

(S/2 − f) otherwise

(2)

where S is the sampling frequency, and Fhi is a bound-
ary frequency chosen such that it covers the significant
formants. We used Fhi = 4800.

Traditionally, in VTLN approaches the warp factor is
assumed to lie between 0.8 and 1.2. Since our goal was
not to normalize, but to corrupt, we chose a smaller
range of 0.9 and 1.1. A larger range may create unre-
alistic distortions by distorting utterances with actual
high warps or low warps beyond the boundaries of 0.8
and 1.2.

The warping procedure is such that it can be ap-
plied directly to the filter banks themselves rather
than distorting the spectrogram first. To do this,
we merely remap the center frequencies f (i) of the
1 ≤ i ≤ N filter-banks using equation 2 to new fre-
quencies f (i)

′
, and generate the triangular filter banks

at these warped frequencies.

2.3. Neural Network Training

During neural network training, at the start of each
epoch, we warped each utterance with a random warp
factor α and generated log Mel-filter bank values over
40 coefficients. The α values were generated from a
normal distribution centered at 1, with a standard de-
viation of 0.1. Values outside the 0.9-1.1 range were
clipped to the boundaries. Since the warping is a very
fast procedure, a random warp factor could be gener-
ated for each input vector during testing, and would
probably improve accuracy. However, for this paper,
for convenience, we use a single random α over all the

http://www.iarpa.gov/Programs/ia/Babel/babel.html
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frames of an utterance.

Deltas and accelaration parameters were also com-
puted and appended to the data. A context of +/-7
frames was used for each data vector, to predict the
phoneme state label from forced alignment.

2.4. Decoding

Once a neural network has been trained with randomly
transformed inputs, the decoding can be performed in
several ways. The traditional method would be to fit a
warp factor to each speaker that gives rise to the best
log likelihood of the utterances for that speaker from
the HMM model. This warp factor would then be used
for decoding the utterances from that speaker. The
same strategy may be applied on an utterance level.
However, we found that if the database was not trained
with VTLP this only produced a minor improvement.

Instead we approached the problem from a model av-
eraging perspective. At test time, V variant vectors
were generated for each utterance by using equally
spaced VTLP warp factors between 0.9 and 1.1. The
predicted posterior probabilities of the HMM states
were obtained by performing a forward pass through
the neural network, for each of these variants. These
multiple predictions were combined by the following
methods:

• Probabilities were averaged (Avg).

• Probabilities were geometrically averaged (Prod).

• The maximum probability for each state was cal-
culated (Max ).

The merged probabilities were then used in the Hybrid
system to perform decoding.

3. Experiments and Results

We created a Kaldi (Povey et al., 2011) recipe to train
a monophone model with a biphone language model
on TIMIT. Spectrograms and forced alignment labels
for individual frames were exported from this recipe.
The spectrograms were computed over 25 ms inter-
vals with a stride of 10 ms. Spectrograms were 201
dimensional, since the FFT were computed over 400
samples of raw signal. 40 dimensional Mel scaled filter
banks were generated. Deltas and accelerations were
appended (actually we striped the coefficients so that
filter bank values and their deltas and accelerations
were in adjacent indices - this makes it easier to code
up the CNNs, which have a assumption of pixel local-
ity built into them). Mean and Standard deviations

for each bin were computed by generating 5 random
variants for each utterance in the database. The data
vectors were then normalized so that each bin had a
zero mean and a unit standard deviation.

We trained DNNs of different depths and a CNN with
a convolutional layer in the bottom, similar in architec-
ture to that described in (Abdel-Hamid et al., 2012).

Learning of neural network parameters was performed
using back propagation with stochastic gradient de-
scent and momentum. A learning rate of 0.1 was used
in the first epoch (0.03 for the CNN). At the end of
each epoch the learning rate was annealed by a factor
of 0.5 (0.9 for CNN) if the prediction accuracy over the
dev set frames did not increase, and parameters were
reset to their values at the start of the epoch 2. For
DNN training, a momentum of 0.0 was used for the
first epoch, and 0.9 for the rest. For CNN training a
momentum of 0.8 was used in the first epoch and 0.9
after.

3.1. Fully Connected Network

We trained fully connected DNNs with 2 to 7 lay-
ers of hidden units between the inputs and outputs.
Each layer had 2000 hidden units. These layers were
pretrained by using a Deep Belief Network (DBN)
that had a Gaussian-Binary layer at the bottom and
Binary-Binary layers above (Hinton et al., 2006). The
input to the DBN was generated using the same
scheme that is used for the neural networks - at the
start of each epoch, a random warp factor is applied to
each utterance in the database. These are normalized
and used as inputs to the DBNs.

3.2. Convolutional Network

The CNN we used had a similar architecture to
(Abdel-Hamid et al., 2012). 91 local filters that looked
at 8 consecutive frequency bins (and associated deltas
and accelerations) over all the 15 temporal frames were
applied at 6 consecutive frequency bins. These values
were max-pooled together. 20 such different sets of
filters were applied starting at each even numbered
bin. The max-pooled activities were passed through a
Rectified Linear Unit (ReLU) (Nair & Hinton, 2010).
Thus there were 1820 (=91*20) units in this layer.
There were two additional layers of fully connected
hidden units of 1000 ReLUs, each before the output
layer. During back propagation through the convolu-
tional layers, the gradient is only computed for those

2Note that this is different from (Abdel-Hamid et al.,
2012; Mohamed et al., 2011) where annealing is done based
on the PER from decoding the dev set
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Table 1. Phone Error Rate (PER) on the test set for the different experiments. Each configuration was run with and
without random transformations of utterances. During decoding, the VTLN warp factor, α, was set to 1 when no
combination was performed. For decoding while averaging over multiple α’s, 5 variants of each data point were generated
at equally spaced values between (a) 0.9 - 1.1, and (b) 0.95-1.05.

Unaugmented Training Random VTLN Training

Arhictecture / α
Avg Prod Max Avg Prod Max

1 a b a b a b 1 a b a b a b
2 layer 22.2 22.3 22.5 22.5 22.5 22.3 22.3 22.1 21.9 21.8 22.0 21.9 21.9 22.0
3 layer 21.9 21.9 22.0 22.3 22.4 22.0 21.9 21.5 21.4 21.1 21.4 21.1 21.3 21.3
4 layer 21.6 22.0 21.7 21.9 21.9 22.2 21.9 20.9 20.4 20.5 20.6 20.6 20.4 20.6
5 layer 21.4 22.1 21.8 22.1 22.0 22.0 22.0 21.3 21.4 21.3 21.2 21.3 21.5 21.3
6 layer 21.0 21.6 21.3 21.6 21.6 21.7 21.3 20.9 20.3 20.5 20.2 20.7 20.6 20.2
7 layer 21.6 21.6 21.6 21.6 21.7 21.6 21.6 20.9 20.9 20.6 20.9 20.9 20.8 20.8

Convolutional 21.7 21.7 21.7 21.6 21.9 21.6 21.6 21.1 20.7 20.7 20.5 20.6 20.8 20.8

units that were chosen as the max units in the pooling.

4. Results and Discussion

For each network architecture, we ran two different
training runs - one with the original database, and
the other in which random warps were generated at
the start of each epoch (see table 1). For each of these
runs we decoded the test data 3 with and without com-
bining predictions from multiple warp factors, α. The
first run, was done with α = 1 (columns 2,8). For
each of the three methods of decoding, Avg,Prod,Max
mentioned in section 2.4, we used two different ranges
of the warp factor: (a) 0.9 - 1.1 and (b) 0.95 - 1.05.
We averaged over 5 equally spaced values of α on this
range.

The results for the baseline, representing the unaug-
mented training for a DNN, or a CNN, with a de-
coding that uses no VTLP are in the second col-
umn of table 1. This can be compared to column 8,
which are results for the same decoding, but where the
database was generated by random perturbations of
the utterances. An absoluted improvement of PER of
0.1,0.4,0.7,0.1,0.1 and 0.3% was seen for DNNs with 2-
7 layers, and 0.6% for the convolutional network. Fur-
ther gains are achieved by using the decoding methods
that combine predictions from transforming the same
data using multiple warp factors. For example, com-
paring column 8 to column 10 shows that by averaging
over range b (=0.95-1.05), a further improvement of
0.3,0.4,0.4,0.0,0.4,0.3% absolute is achieved for DNNs
with 2-7 layers and 0.4% for CNNs. On average, com-
paring case (b) with random database, with the base-

3We do not report dev set results because we think they
play a significant role in the training, by guiding the an-
nealing schedule. Significant but somewhat smaller gains,
were also seen for most of the dev set runs.

line (column 2), we see an improvement of 0.65% on
DNNs. Improvements larger than 0.5% are seen for
each method of decoding, compared to the baseline
run.

Interestingly, averaging over multiple VTLP warp fac-
tors at test time leads to worse results for DNNs
trained without random VTLPs (columns 3-7 com-
pared to column 2). For CNNs trained without ran-
dom VTLPs, however, this degradation is not ob-
served. This observation actually aligns with our
expectations - convolutional neural networks are de-
signed to be, at least partially, invariant to small local
changes. It is clear that here the convolutional net-
works are indeed reslient in the face of transformed in-
puts. At the same time, it is clear that even CNNs can
be improved by augmenting the database with these
transformations during training.

The improved performance gained by combining mul-
tiple predictions for each data point, comes at the cost
of multiple forward passes through the neural network.
However, only a single round of decoding is required,
and no speaker adaptation is performed.

We found that using only a single, optimal, α for each
utterance did not improve performance significantly
over column 8 of table 1. It is our belief that combin-
ing predictions over multiple warp factors, improves re-
sults because it allows us to average over different vari-
ations in the data, and not because the method finds
one single good α for an utterance. Thus we think that
the method should be helpful even in LVCSR tasks, be-
cause it can average over multiple predictions for the
same data.

It must be noted here that the strategy of generat-
ing perturbations to augment the training data is very
well used in vision. However, it seems to have been
ignored in speech. It is possible that this may be due
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to the difficulty in finding a reasonable transformation
function. In fact we have tried with several trans-
formations that seem to have been ineffective in pro-
viding improvements - warping log spectrograms and
using them as input to neural networks, warping Mel
log filter bank spectra along the frequency domain and
the time domain, applying small changes to LPC co-
efficients and reconstructing wav files, etc. It is our
opinion that perturbation is most effective when ap-
plied to the linear spectrograms before the application
of filter banks. In addition, perturbation of the input
by itself is not as effective without averaging the pre-
dictions over multiple perturbations of the data. The
two strategies need to be combined for best results.

It should also be noted that our strategy of generating
perturbations only increases the number of examples
for phoneme contexts that are in the training tran-
scripts. In low resource settings, it would be useful if
it were also possible to manufacture examples of differ-
ent phoneme contexts. However, this method cannot
do this, since it is designed to only create examples of
the same phoneme class as the seed utterances.

5. Conclusions and Future Work

In this paper we have shown that generating random,
linearly warped variants of spectral data can be used
to enhance recognition accuracy significantly. We have
shown how improved decoding results can be achieved
by averaging over multiple predictions over the same
data. However, we have only scratched the surface of
the variations that can be applied. Naturally, tempo-
ral distortions can be applied to spectrograms. Other
distortions, such as non linear distortions can also be
applied along the frequency dimension (probably most
effectively, if applied before multiplication with filter
banks). It is our contention that the strategy should
also be useful for large datasets, and so in the future
we would like to apply it to larger databases such as
Wall Street Journal and Switchboard.
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